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Virial coefficients of hard-sphere mixtures
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The fourth and fifth virial coefficients of binary hard-sphere mixtures have been calculated for size ratios
R>0.05 andR[s22/s11. The composition independent partial virial coefficients have been expressed in
terms of the Mayer diagrams. The corresponding modified star diagrams were evaluated by Monte Carlo
integration. The results are compared with predictions of the Boublik@J. Chem. Phys.53, 471 ~1970!# and
Mansooriet al. @J. Chem. Phys.54, 1531~1971!# equation of state, and the excellent agreement gives strong
support to the validity of that equation of state for very asymmetric mixtures.@S1063-651X~98!09904-8#

PACS number~s!: 64.75.1g, 05.70.Ce
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I. INTRODUCTION

The thermodynamics of a fluid can be obtained from
knowledge of the equation of state. One standard approa
the virial expansion of the pressure in powers of the to
number density@1# r5N/V,

Z511B2r1B3r21B3r31B5r41•••, ~1.1!

where Z5bP/r is the compressibility factor,b is the in-
verse temperature in units of the Boltzmann constant, andBn
is thenth virial coefficient. For pairwise additive interactio
potential,u(r ), wherer is the center of mass separation
the two particles, these coefficients can be defined in te
of Mayer f functions@2#,

f ~r !5exp@2bu~r !#21, ~1.2!

and thenth virial coefficient can be expressed@3# as

Bn5
~12n!

n! E •••E drW2drW3 . . . drWnVn , ~1.3!

whereVn is the sum of all products off functions that dou-
bly connect then particles involved in the coefficient

Vn5(
Sn

)
i . j

n

f i j ~r !, ~1.4!

where f i j is the f function defined between particlesi and j

of the cluster, andr 5urW i2rW j u. The sumSn can be expresse
in diagram forms@1#, for example in terms of the topologi
cally different diagrams multiplied by their multiplicitie
~i.e., the number of different sets of products off functions
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that can be generated by permutating the labeling of the
ticles of the diagram!, each term of that representation of th
sum is called a star diagram@1#.

For a binary mixture the virial expansion coefficients a
still given by Eq.~1.3!, but now each coefficientBn contains
several summands, weighted according to the numbe
ways of distributing two molecular species on then points of
the diagram, and the corresponding molar fraction of e
component, which can be defined for the componenti in
terms of its number density:xi5r i /r, as

Bn5(
i 50

n S n

i D x1
i x2

n2 iB~ i ,n2 i !, ~1.5!

where B( i ,n2 i ) is the summand which contributes to th
nth virial coefficient whose diagrams containi andn2 i par-
ticles of components 1 and 2, respectively.B(n,0) denotes
the nth virial coefficient of a pure fluid with particles o
component 1. The partial coefficientsB( i , j ) are composition
independent, and can be evaluated through the correspon
extension to binary systems of theVn sum expressions.

The calculation of theB4 and B5 coefficients in a pure
fluid requires the evaluation of three and ten different s
diagrams, respectively. For a mixture, the extra degree
freedom introduced by the identity of the particles increa
the number of topologically different star diagrams. For e
ample, the three equivalent four point ring star diagram o
pure fluid lead to new diagrams and lower multiplicities
the partial sumV(2,2) of a binary mixture@4#. The expres-
sions ofB5 of a binary mixture have been reported@5#. Un-
fortunately, in the coloring process that followed, seve
equivalent diagrams of coefficientV(4,1) were drawn, for
instance those generated from diagrams VII and IX
V(5,0) shown below in Fig. 1, and more important errors c
be observed in the diagrams ofV(3,2) @compare Fig. 1~c!
with Eq. ~5! of Ref. @5##. The main consequences of the
errors are only observed at small values ofR. Probably they
would not have been perceived if they did not produce
4486 © 1998 The American Physical Society
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FIG. 1. The Mayer star diagrams contributing to~a! B(5,0), ~b! B(4,1), and~c! B(3,2) of a binary mixture. Continuous lines denote
f i j link, and the coefficient of the diagram is its topological multiplicity. Roman numbers label the diagram according to Ref.@9#.
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following qualitative effects. By using the Bors˘tnik dia-
grams, Saija, Fiumara and Giaquinta@6# calculated theB5
coefficient for binary additive hard-sphere and hard-d
mixtures, and observed that the partial coefficientB(3,2)
showed negative values forR<0.4 and R<0.30, respec-
tively. Such a behavior is opposed to the predictions of
well established extension to hard sphere mixtures of
Carnahan-Starling equation of state, the Boublik and M
soori et al. equation of state~BMCSL EOS! @7#. The nega-
tive values of theB(3,2) coefficient produce a reduction o
the pressure of the mixtures at certain compositions. Furt
given those unexpected results Cousseart and Baus@8# sug-
gested a perturbative correction of the BMCSL EOS to
complish the Ref.@6# values ofB4 andB5 , and showed how
such a correction produces fluid-fluid phase separation
binary mixtures of additive hard spheres withR50.15 and
1
3 . Now, we know thatB5 in such mixtures is always pos
k

e
e
-

r,

-

or

tive, and the reported negative values are a consequenc
the errors in the previousV(3,2) diagrams, which invalidate
the fluid inmiscibility of such hard sphere mixtures from th
perturbated EOS@8#. According to the same argument it
necessary to revise theB5 coefficient for hard-disk mixtures
recently reported@6#. In that stage we decided to recalcula
theB4 andB5 coefficients for binary hard-sphere mixtures
the asymmetry range 0.05<R<0.9.

II. STAR DIAGRAMS

In Fig. 1 we show the topologically different graph
which contribute to the three distinctV5 sums,
V(5,0), V(4,1), andV(3,2). The calculation of the corre
sponding partial coefficients ofB5 requires the evaluation o
10, 22, and 37 star diagrams, respectively. In order to red
both the computational effort required to evaluate the Ma
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expressions and numerical errors, we have extended to
tures the expressions ofVn based in the modified star dia
gram sums,S̃n , of pure fluids developed by Ree and Hoov
@3#. The key point of that approach is the dominant effect
the complete star diagram over the rest of the modified
grams, which represent small contributions to the total va
of the coefficient. We definef̃ i j 5 f i j 11, and introduce tha
function for every pair of particles no directly connected by
f i j link through the identity 15 f̃ i j 2 f i j . Each diagram with
pairs of points not directly connected generates new
grams with two kinds of links:f i j and f̃ i j lines. For a pure
fluid the three and ten topologically different types of s
diagrams which defineS4 andS5 are reduced to two and fiv
different types of modified starsS̃4 and S̃5, respectively@3#.
For a binary mixture, we only need to introduce the mole
lar label of the particles, and to consider how the topologi
multiplicity of each diagram is reduced. For example, if w
introduce two particles of a second component on the inc
plete modified graph of a pure fluidI (4,0), we observe tha
such a diagram is decoupled into two new diagramsI 1(2,2)
andI 2(2,2) with multiplicities 2 and 1, respectively~see Fig.
2!. Of course, by introducing thef̃ i j link in the partial Ṽ4
sums@Fig. 3~a!#, we recover the expressions of theB4 coef-
ficients based on the Mayer star diagrams@4#. The same
procedure has been followed for obtaining the modified s
diagrams of the partialṼ5 @Fig. 3~b!#.

III. MONTE CARLO CALCULATIONS

The numerical task involved in the evaluation of the d
grams which defineṼn is reduced considerably for hard co

FIG. 2. The modified star diagrams of type I of theB4 coeffi-

cient, for the three partial sumsṼ(4,0), Ṽ(3,1), andṼ(2,2) of a

binary mixture. Dashed lines denote anf̃ i j link, and no drawing
means anf i j link.
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potentials. The first two star diagrams, which define theB2
andB3 coefficients, have been obtained analytically@10#. For
the rest we can consider the Monte Carlo method@3#, which
performs the numerical integration of a diagram indirect
by using the known value of the chain diagram with the sa

FIG. 3. The modified star diagrams contributing to the comp
sition independent~a! B4 and ~b! B5 coefficients of a binary mix-

ture. Dashed lines denote anf̃ i j link, and no drawing means anf i j

link.
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TABLE I. Partial B4 virial coefficients of binary mixtures of hard spheres with different diameter ra
R. The coefficients are reduced in terms of the powers11

9 . q denotes the number of independent batch
each of which containsNt millions of trials.B(4,0)52.636@1#.

B4s11
29 q/Nt B(4,0) B(3,1) B(2,2) B(1,3)

0.05 60/0.04 2.64~2! 0.554(5)31021 0.431(5)31024 0.179(3)31027

0.2 80/0.04 2.65~2! 0.159~1! 0.434(2)31022 0.849(4)31024

0.2 @12# - - 0.1589~4! 0.4331(5)31022 0.8480(5)31024

0.6 67/0.05 2.62~2! 0.888~6! 0.287~2! 0.892(4)31021

0.6 @4# - - 0.912~9! 0.280~3! 0.891(9)31021

0.8503 80/0.032 2.65~2! 1.85~1! 1.28~1! 0.889~4!
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TABLE II. Partial B5 virial coefficients of binary mixtures of hard spheres with different diameter ra
R. The coefficients are reduced in terms of the powers11

12. Other symbols have the same meaning as in Ta
I. B(5,0)52.121@11#.

B5s11
212 q/Nt B(5,0) B(4,1) B(3,2) B(2,3) B(1,4)

0.05 60/0.80 2.12~3! 0.266(3)31021 0.195(2)31024 0.79(1)31028 0.224(3)310211

0.2 80/0.6 2.13~2! 0.958(6)31021 0.234(1)31022 0.426(2)31024 0.648(4)31026

0.2 @6# - - 0.96(3)31021 20.240(2)31021 0.173(4)31023 0.64(2)31026

0.6 67/1.6 2.10~3! 0.649~6! 0.199~2! 0.583(4)31021 0.166(2)31021

0.6 @5# - - 0.65~2! 0.195~4! 0.59(3)31021 0.18(2)31021

0.8503 80/0.8 2.14~2! 1.44~1! 0.992~4! 0.670~3! 0.449~2!
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number of particles, calculated from the partialB2 coeffi-
cients@3#

I ch5S 4p

3 D n21

)
i 51

n21 S s i1s i 11

2 D 3

. ~3.1!

A chain configuration is obtained, by placing particle 1 o
diagram at the origin of coordinates, and the remain
points are randomly positioned in the sphere with rad
(s i1s i 11)/2 centered at the preceding point. Then we co
the number of times that the resultant chain conforms
modified star diagrams. After a large number of trials, o
obtains an estimation of the diagram value through the r
tion given by

I 5~21!nf
I chNc

Nt
, ~3.2!

wherenf is the number off bonds in the diagram,Nc is the
number of occurrences of the diagram, andNt the number of
trials, or generated chains. In a trial we generate a chain
every combination of particle identities. We have perform
four different runs, with 20 batches each of;104 chain con-
figurations of four particles; each four point chain is used
generate;30 five point chains~see Tables I and II for de
tails!. We have estimated the error bars as usual in prev
studies@3#,

error B~ i , j !52F (
m51

q

@Bm~ i , j !2B~ i , j !#2

q~q21!
G 1/2

, ~3.3!

whereBm( i , j ) is the average of them batch,q is the total
number of batches, andB( i , j ) is the final average. The dia
grams with higher degrees of polydispersity showed sma
error bars, since they have a much larger chance to be
erated. In any case, the values accepted in the literature
the pure components@3,11# provided an additional test of th
accuracy of our results.

IV. RESULTS

We present the Monte Carlo~MC! results for the compo-
sition independent coefficients ofB4 andB5 in Tables I and
II, respectively. The partialB4 agree with the values reporte
@12# from evaluation of the Mayer star diagrams. The par
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B5 show discrepancies with Ref.@6#’s values at low values of
R. We have included in Table II the values reported
Bors̆tnik for R50.6 @13#, the differences are in between th
error bar of the numerical integrations. For smaller values
R, we observe the consequences of using Bors˘tnik diagrams,
mainly in theB(3,2) andB(2,3) coefficients. Our calcula
tions show positive values in all partial coefficients for a
values ofR considered in this work. In Fig. 4 a comparison
between the calculated coefficients and predictions from
BMCSL EOS is shown. The agreement between both set
data is excellent.

FIG. 4. ~a! B4 and ~b! B5 virial coefficients plotted in reduced
units of theB2 coefficient as a function of the large sphere mo
fraction, x1. Circles are the predictions of the BMCSL EOS~Ref.
@7#!. The upper plot shows the results forR50.05, and the lower
one that forR50.6.
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V. CONCLUSIONS

We have obtained Mayer star diagrams which define
composition independentB5 coefficients of a binary mixture
Also we extended the modified star formalism of Ree a
Hoover@3# to binary mixtures, offering a convenient way fo
numerical evaluation ofB4 and B5 coefficients. The results
show positive values of all partialB5 of hard sphere mixtures
for R>0.05. The BMCSL EOS is a good description of t
thermodynamic properties of highly asymmetric additi
hard-sphere mixtures. Recent theoretical schemes@14# have
observed composition instabilities in hard-sphere mixtu
with R;0.3, which were explained as a sign of fluid-flu
phase separation. It would be interesting to test if such
e

d

s

p-

proaches can support the results reported here, and the
calculations of compressibility factor of mixtures wit
R50.2 at low molar fractions of the large component@15#.
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